11 Weather Terms You Should Know And Understand

11 Weather Terms Heading

Over the years weather forecasts helped us to familiarize ourselves and better understand the weather around us. By making use of better explanations with graphs, charts and animations, we have a much better understanding today of how weather systems operate and affect us.  Yet, there are still some weather terms we are still fairly unfamiliar with.

It is important to get to know and better understand them, which will help you to gain an even better understanding of how and why we affected by the different elements of our local and regional weather.

Especially if you have your own personal weather station, or are a weather enthusiast keen on better understanding how everything fits together, you will find the following information very useful.

Not to overwhelm you with too much information, I am going to discuss just 11 of the more important relevant weather terms and how they affect your surroundings. (We can always go into more detail later on in a much more detailed article.)

Let's get started with some weather terms some of you may already be familiar with:

1) Low & High Pressure Systems

Probably one of the most well-known terms most of you are already familiar with. But how many of you know exactly what they mean or how they work?

We first need to understand what air pressure is before we can delve into low and high pressure systems. Believe it or not, air actually has weight since it contains molecules of hydrogen, oxygen and other small particles. (And like everything on and close to the earth, are affected by the earth's gravity.)

Air Pressure

Air pressure can be defined as the weight of the air molecules in a specific space pushing down on the earth. Put another way, air pressure can be seen as the amount of molecules present in a certain volume of air at any given moment or period of time.

And it is air pressure that is determined by a variety of factors, which in turn leads to different changes in weather. This leads us to low and high pressure systems.

Low-Pressure System

Low Pressure System

A low-pressure system is defined as a specific area where the weight of the air (or amount of molecules present in this volume of air) is lower than that of the air in the surrounding areas.

The process through which a low-pressure system is formed is called cyclogenesis. (which is the umbrella term for the different circulation processes involved in the formation of a low-pressure system.) We don't need to look at all of them for the purpose of this article though. Just know that the term "cylcogenesis" is representative of all these different processes.

Development

In order for a low-pressure system to form, certain elements must be place to cause the drop in air pressure. A low-pressure system is normally formed as a result of 2 different processes:

  1. Wind Divergence Aloft
  2. Thermal Lows
1) Wind Divergence Aloft

Wind Divergence Aloft causes the air in the upper troposphere to move in opposite directions, creating a suction effect which allows the air at the surface to start lifting. (The effect counteracts the laws of gravity by creating a vacuum in the upper troposphere which makes the lifting of the heavier surface air possible).

Low-pressure systems that are formed as a result of this effect mainly take place in 2 places:

  1. To the east of upper troughs (Which normally have long wavelengths)
  2. In front of shortwave troughs
2) Thermal Lows

Many of you familiar with tropical depressions (and the resulting tropical storms, hurricanes etc.) will be familiar with the way in which these low-pressure systems are formed.

As the surface of our oceans and land masses are warmed up by the sun, it cause the air above it to heat up as well. The warmer air starts to rise, leaving less air at the surface which causes a low-pressure system to occur as a result.

Characteristics Of A Low-Pressure System

Low-pressure systems are almost always associated with cloudy and rainy weather. (You only need to look at any weather forecast to notice how often "low-pressure system" is mentioned in the same breath as cloudy and rainy conditions.) There is a good reason for this...

As the air above the low pressure system continues to rise, it starts to cool down. As the moisture-carrying air cools down, condensation and cloud formation takes place which normally results in precipitation.

As air normally flows from an area of high-pressure to low-pressure, winds tend to blow inwards towards the area of low pressure.

This inward circulation of air is influenced by the earth's rotation. This effect is more commonly known as the Coriolis Effect. As a result the winds rotate clockwise around a low-pressure system in the Southern Hemisphere, and counterclockwise around a low-pressure system in the Northern Hemisphere. (Also referred to as cyclonic flow.)

High-Pressure System

High Pressure System

A high-pressure system is defined as a specific area where the weight of the air (or amount of molecules present in this volume of air) is more than that of the air in the surrounding areas.

Simply put, a high-pressure system occurs where the atmospheric pressure on the earth's surface is higher than that of surrounding areas.

Development

In many ways, a high pressure-system and its development can be seen as the direct opposite of a low-pressure system. This is especially evident in the way it is formed...

Warm air that has risen from the equator, cools down and the resulting precipitation dries out the air which then starts moving towards the poles.

The cold dry air from the upper troposphere starts descending (as the cooler air weights more than the surrounding warmer air and gravity pulls it down). The air converges at the top of a the high pressure system, strengthening the descend of the cooler air.

As the cool air continues to descend, it starts compressing as well as it nears the surface level. This results in a high-pressure system forming where the descending air reaches the surface center of the weather system.

Characteristics Of A High-Pressure System

Low-pressure systems are normally associated with clear sunny weather and light surface winds. (The cool dry air, combined with the air heating up as it descends prohibits any formation of clouds and precipitation.)

As air always moves from an area of high-pressure to low pressure, winds blow outwards and away from the center of the high-pressure system.

Just like low-pressure systems, the winds rotating around a high-pressure system is influenced by the the Coriolis Effect (caused by the rotational spin of the earth).

Unlike low-pressure systems though, the winds rotate in a clockwise direction around high-pressure-systems in the Northern Hemisphere, and counterclockwise in the Southern Hemisphere.

2) Cold Front

A cold front occurs when the leading edge of a cold moving mass of air meets a body of warmer air. The boundary between these two air masses is called a cold front. A cold front is normally associated with stormy weather conditions, including wind, rain, clouds and potentially thunderstorms.

Cold Front

This characteristic stormy weather that accompany a cold front is a direct result of the "collision" between the 2 air masses. As the edge of a this fast moving cold air mass reaches the warmer air, the cold (and heavier) air undercuts and starts lifting the warmer (lighter) air up into the atmosphere.

As the warm air is lifted up it starts to cool down, causing the moisture in the air to start forming micro-droplets as a result of condensation. If enough moisture is present in the rising air, this will lead to cloud formation and precipitation.

Please note that this is a very general and broad description of a cold front. For example, a cold front that meets and lifts a body of warm air that carry very little or no moisture, may not display any of the normal characteristics associated with a cold front (e.g. rain, clouds and wind).

There are also many different weather systems that can be responsible for a cold front to form. We will discuss this in more detail in another article.

3) Warm Front

A a warm front occurs when a moving mass of warm air meets a colder and denser body of air. The boundary where these two air masses meet is called a warm front. A warm front is normally associated with slow moving stratus type clouds producing light rains for a sustained period of time. (Similar to a stationary front.)

As the warm air cannot replace the denser and heavier body of colder air, it is forced to rise and move over boundary of the colder air mass. This process is called overrunning.

Warm Front

If there is enough moisture in the air (which is not always the case), the rising warm air will start to cool down as it moves up and over the mass of cold air. As a result condensation and cloud formation will take place which normally produce sustained light rain, often followed by a light drizzle later on.

As a warm front moves much slower than the more disruptive cold front, the weather changes associated with it is also more prolonged and not that severe. It is normally preceded by high forming clouds that slowly get replaced by lower cloud formations as the warm approaches.

The actual arrival of the warm front it normally accompanied by a sudden drop in air pressure. The light rain previously mentioned, normally arrives with the cold front and as the front passes over it turns into a light drizzle.

As in the case of a cold front, the conditions described above are fairly broad characteristics of weather normally associated with a warm front. (As a result, a variety of different weather conditions can occur due to specific characteristics of a warm front, as well as the part of the word it occurs in.)

4) Jet Streams

Jet streams are defined as long narrow bands of strong winds, blowing at high velocities above the earth's surface, normally found in the upper troposphere at heights of 9 to 16 kilometer (30 000–52 000 feet) above sea level. There are 4 major jet streams present above the earth's surface and they all have a huge influence on global climate and the formation of various weather systems.

The 2 strongest jet streams are found at the south and north pole respectively at heights of at 9–12 kilometer (30 000–39 000 feet). The 2 weaker subtropical jet streams occur at a height of 10–16 kilometer (33 000–52 000 feet).

Jet streams are mainly formed as a result of 2 processes.

  1. Solar Radiation (the heating up of the atmosphere) resulting in the influential Hadley, Polar and Ferrel circulation cells
  2. The Coriolis Effect (a result of the earth's rotation, affecting global air movement)

Not always moving in a straight line, but rather in a more meandering manner as it moves between areas of hot and cold air, jet streams form a boundary between these pockets of warmer and colder air.

Jet streams are also influenced to a large extend by the difference in temperature between these areas of hot and cold air. A bigger difference in temperature between the warmer and colder air masses will result in a substantial increase in the velocity at which the jet stream is travelling.

As a point of interest, jet stream activity is of particular importance to the aviation industry, and is closely monitored by many big players in the industry. Making use of jet streams flowing in the same direction a jet airliner is travelling in can be very beneficial for saving fuel and reaching a destination on time (or making up for lost time). 

(Getting it wrong however, and airlines may end up with their planes flying directly into an opposing jet stream flow, leading to additional fuel being used and flights potentially arriving late at their destination.)

5) Severe Weather

Severe weather refers to any meteorological phenomena that is dangerous and potentially destructive. This can lead to severe damage, disruption of large areas of infrastructure and even loss of life. This include thunderstorms & lightning, hail, heavy rain & flooding, tornadoes and severe wind conditions.  

thunderstorm

Depending on where you live on the planet, you may be influenced by a severe weather conditions common to the specific region. For example, areas in India may be very susceptible to flash-flooding due to the seasonal summer monsoon bringing with it huge amounts of rainfall. 

Similarly, if you live in Tornado Alley (the area found in the Great Plains of the Central United States), you are more likely to suffer the devastating effects of tornadoes forming during the spring and summer months. 

No matter where you find yourself, it is always important to pay attention whenever severe weather condition warnings are issued. You and your family's life may literally depend on it.

6) Thunderstorm

Thunderstorms can be described as fairly short-live and violent disturbances in the weather, normally associated with lightning and thunder (the sound produced by lightning), strong winds, heavy rains and sometimes even hail. They are normally a result of a sudden buildup of cumulonimbus clouds.

For thunderstorms to occur, three key ingredients need to be present:

  1. Moisture
  2. A Lifting Mechanism (normally in the form of heat)
  3. An Unstable Rising Air Mass

With these 3 ingredients present, a thunderstorm will go through three phases of development to complete the process:

  1. Developing (Cumulus) Stage: Warm air with a low pressure at the surface starts to rise. As it continues to rise it cools down and the moisture in the air condenses and form micro-droplets. If the air is unstable enough and continues to rise, it leads to the formation of cumulus clouds. Through a process of convection the air is driven higher into the atmosphere by updrafts, creating a low-pressure zone.
  2. Mature Stage: The air continues to rise until it reaches a region of warmer air which stops it from rising any further. It starts spreading out horizontally and the large amounts of moisture combines to form large droplets. As they start falling they cause downdrafts which, combined with the updrafts result in the formation of cumulonimbus clouds. This causes severe internal disturbances within the clouds which manifest itself as the severe conditions we commonly associate with thunderstorms.
  3. Dissipating Stage: At this stage a process called a downburst occur as the downdrafts overwhelm any more updrafts and air inflow into the thunderstorm. This process happens very rapidly as this downburst carries air quickly to the ground and then spreads out, after which the thunderstorm starts to dissipate relatively quickly.

You also get more than one kind thunderstorm. Single-cell, multi-cell clusters and Supercells are just a few well-known examples. (We will discuss these different types of thunderstorms in a separate article.)  

There is one more important fact to take note of. Even though most thunderstorms look violent and spectacular, in order for them to be officially classified as severe thunderstorms, they need to fulfill the following criteria:

  • Wind speeds of at least 93 kilometers per hour (58 mph)
  • Hail with a diameter of 25 millimeters (1 inch)
  • The presence of tornadoes

7. Dry Spell (As Opposed To A Drought)

A dry spell can be defined as a sustained period of dry weather with lower water and soil moisture levels due to a lack of rainfall. A region with significant lower rainfall figures during its rainy season compared to that of previous seasons, can be regarded as experiencing a dry spell.

Dry Spell

A dry spell should not be confused with a drought however. There is much debate and confusion about the difference between the two, and depending on which region you find yourself on the planet, definitions may vary.

In general, a dry spell  do not last as long as a drought. Although it puts strain on natural resources, especially in the agricultural sector,  it normally does not pose an immediate threat to human or animal life.

A drought on the other hand, is a much serious condition with severe consequences. Probably the most important feature setting it apart from a dry spell, is the length of time over which it occurs. 

It can last over a multiple series of dry spells, sometimes taking years or decades to fully develop. The results are normally devastating. Water, and resources depending on water can be completely depleted.  Often this result in the destruction of the agricultural sector, the lifeblood of any country region. This will directly threaten the livelihood of the region's inhabitants and cripple the sustainability of all processes necessary for growth and survival.

As a result one should be very careful to refer to sustained dry spells putting strain on any region a for a period of time, as a drought. (Something the news media is sometimes quick to jump on for dramatic effect, often causing undue panic in the process.) They may have similarities, but are very different in their extent and level of seriousness.

8) Wind Chill

Wind chill (or the wind chill factor as it is more commonly known) refers to the phenomena where we experience the temperature around us to be much colder than it actually is. This is caused by the wind blowing the surrounding cold air against you, making you experience colder temperatures than a thermometer will suggest.

One reason you are experiencing the temperature to be that much colder, is that your body's natural heat creates a layer of warm air around your skin to provide a form of insulation from the surrounding cold air. Wind blowing against your skin however removes this layer of insulation, making you experience the temperature to be much colder.

When you hear or read the term, "feels like...)" next to the temperature given, it refers to the wind chill "temperature", in case you were wondering.

9) Heatwave

A heatwave refers to a period of prolonged exceptionally hot weather, often accompanied by high humidity levels. It is often determined when compared to the hottest average temperatures from the region during the same period measured during previous seasons.

heat wave

The precise definition differs between different regions and different weather services. Sometimes this can lead to much confusion. (For example, in certain parts of Australia, a heatwave is defined by 5 consecutive days of temperatures exceeding  35 °Celsius (95 °Fahrenheit) or 3 consecutive days of temperature exceeding 40 °Celsius (104 °Fahrenheit).

The South African Weather Service again, define a heat wave as the maximum temperature in a specific area to be 5 °Celsius hotter than the average maximum temperature of the hottest month of that specific area for at least 3 consecutive days.)

As you would have noted from the 2 samples above, definitions can vary widely from one region to another. Rather than relying on specific numbers, the definition highlighted in bold at the start of this section should be considered to be a more accurate determination of a heat wave in your area.

Heat waves are a result of the formation and strengthening of high-pressure systems in the upper atmosphere (3 000–7 600 meters or 10 000–25 000 feet). As weather patterns move much slower during the summer months compared to winter months, they tend to linger over a specific area much longer.

The air under the high-pressure system dries and warms as it is forced down and sinks towards the surface. This in turns forms an inversion layer, preventing convection from taking place, and trapping the hot humid air beneath it.

10) Tornadoes

A tornado is a funnel-shaped, rapidly rotating moving column of air. They normally form at the base of cumulonimbus clouds and can cause various degrees of damage, depending on the scale and strength of the wind speeds.

tornado

Tornadoes are classified on a scale from F0 (the weakest form doing minimal damage) to F5 (the strongest form of the the system able to rip houses clean off their foundation and do significant damage to infrastructures).

Wind speeds are normally around 180 km/h (110 mph) or less, but in Category F5 storms wind speeds of over 450 km/m (300 mph) can be reached with catastrophic consequences. Tornadoes are also around 250 meters (80 feet) in diameter, but can be as big as 3 kilometers (2 miles).

Tornadoes are formed due to a convergence of downdrafts and updrafts below a cloud base which starts the rotating air movement. As the updrafts intensify, it causes an area of intense low pressure which are pulled to the surface.

This results in the familiar funnel cloud with the section reaching the surface containing strong updrafts and high wind speeds which can lead to the severe damage often associated with strong tornadoes. You can find in-depth information about tornadoes in this article.

11) Climate Change

As you will be very well aware of, Climate Change is very controversial topic and a subject for a whole series of articles on its own. Since it is widely been used over the passed few decades in the same breath as global warming (with its different causes and its effect on the environment and the planet as a whole), an explanation of what is meant by this term is warranted.

To summarize, climate change refers to the changes in the state of the earth's atmosphere over a period of at least 3 decades and more. This include global changes in temperature, the flow of our oceans' currents and rainfall to mention a few variables.

Climate change having going through natural cycles of Global Warming and Ice Ages through millions of years during the earth's history.

What makes Climate Change that much more relevant and and important to us, is the unnatural accelerated pace at which it is taking place now, and the close ties with human intervention and the impact to the environment since the Industrial Revolution and our continued release of fossil fuels and gasses into the atmosphere.

But like I said, this is a topic for a whole other conversation...

Conclusion

11 Very important weather terms were addressed in this article. Hopefully this will clear up many elements of the weather you were unfamiliar with.

You will note that some terminologies received a lot more attention and got explained in more detail than others. Those were the terms I regards as important to understand and will help you to better understand many other weather terms and occurrences.

Feel free to leave me any comments, questions or suggestions, and I will get back to you as soon as possible.

Remember to join my  Mailing List  to be informed whenever a new article is released, and share new developments and helpful hints & tips.

Until next time, keep your eye on the weather!

Wessel



Wessel Wessels
 

Lifelong weather enthusiast. Interest in all things weather-related, and how global climate and local weather interact. Home weather station owner for almost 2 decades, but still learning and expanding my knowledge every day. Keen on sharing my knowledge and get more people involved and interest in both their local weather and how it interacts with climate on a global scale. Love sharing my knowledge on home weather stations, how they work and the many ways you can use them to your advantage. All in all, just a bit of weather nerd.

Click Here to Leave a Comment Below 7 comments
Installing & Reviewing The Ambient Weather WS-2902A Weather Station - February 22, 2019

[…] different changes in weather elements influence the weather. You can find some helpful information in this article explaining different weather elements & terminologies and how it affects weather […]

Reply
How To Read A Weather Map To Better Understand The Weather - March 12, 2019

[…] In the Northern Hemisphere air circulates counterclockwise around a low-pressure system, and in the Southern Hemisphere, it flows clockwise around them. You can find out more about the development and characteristics of a low pressure system in this article. […]

Reply
How Far Ahead Can You Forecast Weather - The Possibilities & Limitations - April 1, 2019

[…] mentioned in an earlier article (which you can read here), Jet Streams are long narrow bands of high-speed speed winds, circulating the earth at high […]

Reply
13 Surefire Ways To Make Sure Your Home Weather Station Fails - April 8, 2019

[…] two systems into much more detail. If you interested, you can read more in-depth information in this article. […]

Reply
What Is Temperature Inversion And How Does it Affect The Weather? - April 24, 2019

[…] To find out more about warm and cold fronts and their characteristics, you can read more about it in this article. […]

Reply
What Is A Barometer, How It Works, Where To Place It & Different Types - June 11, 2019

[…] device. You can see a detailed explanation of how the atmospheric pressure influences the weather in this article. […]

Reply
What Causes Weather To Change So Quickly, And Can It Be Predicted? - June 17, 2019

[…] You can read more about how air pressure works, how it is formed, and the different types of weather that is created as a result, in this article. […]

Reply

Leave a Reply: